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Abstract. We give a new non-isospectral extension to 2 + 1 dimensions of the Boussinesq
hierarchy. Such a non-isospectral extension of the third-order scattering préblem 1, +(V —

A) ¥ = 0 has not been considered previously. This extends our previous results on one-component
hierarchies in 2 + 1 dimensions associated to third-order non-isospectral scattering problems. We
characterize our entir@ + 1)-dimensional hierarchy and its linear problem using a single partial
differential equation and its corresponding non-isospectral scattering problem. This then allows
an alternative approach to the construction of linear problems for the €atirel)-dimensional
hierarchy. Reductions of this hierarchy yield new integrable hierarchies of systems of ordinary
differential equations together with their underlying linear problems. In particular, we obtain a
‘fourth Painlee hierarchy’, i.e. a hierarchy of ordinary differential equations having the fourth
Painlee equation as its first member. We also obtain a hierarchy having as its first member a
generalization of an equation defining a new transcendent due to Cosgrove.

1. Introduction

Higher-dimensional extensions of completely integrable equations in 1 + 1 dimensions can be
obtained in various ways. Here we are interested in one particular kind of extension, namely
that to equations having non-isospectral scattering problems. The first such example appears
to be due to Calogero [1], and has as a special case the partial differential equation (PDE)

U, = RU, 1)

whereR = 9% + 4U + 2U, 3.1 is the recursion operator of the Korteweg—de Vries (KdV)
hierarchy [1, 2] (her®, = 3/9x and similarly in what follows fod,). The application of the
inverse scattering transform to this equation has been discussed in [1, 3]. More recently, it has
been shown to admit ‘breaking soliton’ solutions [4].

Similar (2 + 1)-dimensional non-isospectral extensions of other well known PDEs have
also been given, for example, for the nonlinear $dimger equation [5-7], the classical
Boussinesq system [8] and the Fuchssteiner—Fokas—Camassa—Holm equation [9]. However, all
ofthese examples are based on second-order scattering problems. Recently, the present authors
have given non-isospectral extensions in 2 + 1 dimensions of one-component hierarchies of
PDEs associated to third-order (Sawada—Kotera and Kaup—Kupershmidt) scattering problems
[10]. Here we extend this work still further by constructing a non-isospectral variant of the
Boussinesq hierarchy in 2 + 1 dimensions. Again these results are new. Reductions of the
resulting two-component hierarchy of PDEs to ordinary differential equations (ODES) then
give new hierarchies of integrable systems of ODEs together with their underlying linear
problems. These include a hierarchy of coupled ODEs which has as its first member a system
equivalent to the fourth PainlévequationP,y; that is, we obtain &,y hierarchy. We also
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obtain a hierarchy of coupled ODEs which at lowest order gives a generalization of an ODE
due to Cosgrove [11].

The layout of the paper is as follows. In section 2 we construc{®ur1)-dimensional
extension of the Boussinesq hierarchy together with the corresponding hierarchy of linear
problems. This construction is based on a characterization of the entire hierarchy and its
scattering problem using a single equation and its non-isospectral scattering problem. In
section 3 we discuss reductions of this hierarchy to one component, and show how this allows
us to recover our previous results. In section 4 we discuss reductions to systems of ODEs.
Section 5 is devoted to consideration of an explicit example. In section 6 we give a summary
and conclusions.

2. A non-isospectral Boussinesq hierarchy

Motivated by (1) and the work in [10], we begin by considering@@e 1)-dimensional system
U =RU, +G 2

whereU = (U, V)T, Risthe recursion operator of the Boussinesq hieraiGhy, (0, g)7, and

g is an arbitrary function of andz which is introduced by our non-isospectral condition (the
equation satisfied by the spectral parameter in the corresponding Lax pair). For an appropriate
choice of coordinates, the recursion operator of the Boussinesq hierarchy can be written as
[12-16]

R = JoJ;t (3)
where the Hamiltonian operatosg andJ; are defined by
203+ 2U09, + U, —3* — 92U + 30,V -V,
Jo=| 0} +U02+3Va, +V, —3[20°+2Ud3+03U) + (U? - 3V,)d, 4)

+3.(U? — 3Vy)]

0 a,
J1= 3( 5 0 ) (5)
(here we follow the choice of coordinates used in [16]).
The system (2) has the Lax pair
Yiox = —U¥ = (V=Y (6)
Y = AP + 20, U ) Yn + 3(871 Ve — U )Yy + 2(2U01U; — 3V, + 22Uy, )¢ 7
where the spectral paramefee= A(z, t) satisfies

and

A=A tg. 8)

The system (2) and the corresponding non-isospectral scattering problem (6)—(8) are new.

We now use the system (2) and its associated non-isospectral scattering problem to generate
our(2+1)-dimensional Boussinesq hierarchy and at the same time the corresponding hierarchy
of non-isospectral scattering problems. We do this by observing that, for suitably specified
flow timest andz, equation (2) can be understood as representing a generic member of this
hierarchy and (6)—(8) its underlying scattering problem. We then use these equations to iterate
between both successive flows and their linear problems. We also iterate on the fi@ction
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This provides an alternative approach to that of seeking expansionfoimnthe coefficients
of the temporal part of the Lax pair (a technique originally proposed in [17]). As the starting
point for this iteration (i.e. as the base equation) we take the system

0
Uzl ZRUy +aJo<1> +RGo + G;. (9)

When performing our iteration eadh; = (0, g;)7, a andx are considered to be functions of
all possible flow times; andy, but not ofx.

The reason for making this choice of base equation is in order that reductionsto 1 + 1
dimensions will include both sequences (see [13, 15, 16]) of the Boussinesq hierarchy. These
two sequences, with flow timesg,, m =0, 1, 2, ..., are defined as

Uz, = JoM,[U] M,+2[U] = J; HJoM,, [U] (10)

l

whereMo[U] = (1, 0)” andM;[U] = (0, 1)”. We see that the second term on the right-hand
side of (9) is a copy of the; flow, and it is this that will allow us to include reductions to the
second {oqq) Sequence of the Boussinesq hierarchy. Thiflow can be written as a scalar
equation, and is of course the Boussinesq equation itself,

Uny = —2(Usy +2U%),,. (11)
The system (9) can be written locally by settibtig= u,, V = v,,
Uiy = 3[20sxy — Urrxxy — Uyllxxy — Uyllxxr + 25 Vxy — 2l yxlsy + 0314y
+2u Ve + Uyl ] + a[20x — teri] + F80[2ux + X1ty ] (12)

1
Uxp = §[3Uxxxxy - Zuxxxxxy - Zuyuxxxx - 4quxxxy + Sux vxxy - 6uxxuxxy

2
—6utyy Uy + BUyVpoy — 2USUyy + Wy Vyy + B0y Uxy + OV llyy — 20Uyl ]
1 1
_§a[2Mxxxx + zuxuxx - 3Uxxx] + §g0[3vx + -xvxx] + 81- (13)

This system has the Lax pair

wxxx = _uxl//x - (vx - )‘)w (14)
Vi, = Ay + 5y + 3 Yax + 50y — ey + g0X) Y
+%[(2uxuy - vay + 2”xxy) +6au, — BSO]w (15)

where the spectral parametesatisfies the constraint
Ay = Ahy +Ago+ g1 (16)

In order to use (2) to iterate between successive flows of our hierarchy, and their
corresponding scattering problems, we begin by writing a generic member qRthig)-
dimensional hierarchy as

U,=K, a7

and the corresponding generic evolution equations for the eigenfungtimd the spectral
parameted as

Vi, = Doty + QuVie + (P — Qn) ¥ + 53U Qp — 3Py + 20, ) ¥ (18)
A, = Ay 19)
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In equation (18) we follow the notation used in [16], although the form of (18) can clearly be
motivated by that of (7). We then obtain from (2), (7) and (8) the recursion relations

K,=RK, 1+G, (20)
I, =Al,_1 (21)
Ay =AAN, 1+ g, (22)
P, =AP, 1+ J 'K, 1 (23)

whereP, = (P,, 0,)T andG, = (0, g,)”. These recursion relations, together with the
base equation (9) and its scattering problem and corresponding constrajrthen yield the
hierarchy of evolution equations
U, = K, = R'"U, +aR" " JoM[U]+ Y R"™G; (24)

i=0

and corresponding hierarchy of spectral problems

Yiox = —U¥ = (V=Y (25)
Vi = MYy * Qu + (Py = Q) + 5UQ, — 3Py +20, )Y (26)
HereP, = (P,, 0,)7 is given by
P, = ( 0 ) e i PR ¢ (27)
a i=0

where we have sdky = U, + Gg, anda satisfies

hay =Ny + Y A g (28)
i=0

This hierarchy of evolution equations (24) in 2 + 1 dimensions is new. The first term on the
right-hand side of (24) represents a non-isospectral extension to 2 + 1 dimensions of the first
sequencettyer) Of the Boussinesq hierarchy (10). Such an extension has not been considered
before. The second term is tie + 1)-dimensional sequence which includes the Boussinesq
equation itself. The third term represents a non-isospectral deformation which gives rise to
non-autonomous terms, which far > 2 are in the general case non-local. We note that
allowing t in (2) to be a vector would allow us to obtain linear combinations of the flows (24).

Reductions of the system (24) to PDEs in 1 + 1 dimensions include the non-isospectral
deformations of standard Boussinesq flows considered in §15}(3,), and also reductions to
non-isospectral deformations of inverse Boussinesq fléys=0). We note that a discussion
of non-isospectral scattering in 1 + 1 dimensions can also be found in [18].

3. Reductions in components

The hierarchy (24) is a two-component hierarchy of PDEs in 2 + 1 dimensions. We now
consider reductions of this hierarchy to scalar equations. We find that the even flows
n = 2m of this hierarchy admit both of the standard reductigtisV) = (2w, W,) and

(U, V) = (W/2,0) of the third-order scattering operator (6). These reductions then yield the
hierarchies of one-component equations in 2 + 1 dimensions—non-isospectral extensions of
the Kaup—Kupershmidt and Sawada—Kotera hierarchies, respectively—obtained in [10]. The
odd flowsn = 2m — 1 of (24) also admits the reductigty, V) = (2W, W,), which then gives
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a hierarchy of scalar PDEs in 1 + 1 dimensions. This scalar hierarchy can also be found in
[10].

In order to show the above we consider the form of the square of the recursion operator
R in each of these two reductions. In the cé8eV) = 2W, W,) we find

, iR 0
RE=| ., L . (29)
520 (K[W]O[W] — 0[W]K[W]) —08,K[W]O[W]d;

where
O[W] =2+ Wa, +9, W (30)
K[W] = 07 [0° + 3(, W2 + 82Wa,) + 2(93W + W) + 8(8, W2 + W23,)] 9, (31)

andR = O[W] K [W]is the recursion operator of the Kaup—Kupershmidt hierarchy [19, 20]. In
the cas&U, V) = (W/2, 0) we find that the square of the recursion operator of the Boussinesq
hierarchy is of the form
LR .
(32)

Rz:<— :

whereR is the recursion operator of the Sawada—Kotera hierarchy [19, 20].

It follows that if for each of the above reductions we consider the even flow2m of
the hierarchy (24) with alx = 0,k = 0,1,2,...,m, and also rescalg,, — (—%)"d,,,,
we obtain

N

o

m

Wi, = R" W, +3aR"O[W](W,, +4W?) = Y " g;R"70[W] x (33)
i=1
and
W, = R"W, +3aR"“9[W](W,, + 1W?) — Zm:q,-fém—"e[W] x (34)
i=1
respectively, wherg; = —%(—27)ig2i,1. These are the one-componéat+ 1)-dimensional

hierarchies presented in [10]. For the special case of the second sequence of the standard
autonomoug1 + 1)-dimensional Boussinesq hierarcty, (= 0 and allg; = 0 in (24)) these
results can be found in [14].

We now consider the odd flows = 2m — 1 of (24) in the case wherg, = 0 and
gx=0,k=0,1,2 ...,m — 1, and make the reductiai/, V) = (2W, W,), again setting
g = —2(—27) gzi_1. Since forn = 1 in (24) this obtains

0= RU, +aJoMi[U]+ G1 = (0, 3, K[W]W, + 3ad, (W, +4W?) — g1)" (35)
we then find, using (29), that the hierarchy (24) reduces to
O (K[WIOIWD" T K[WIW, + 3ad, (K[W]O[WD" (Wi, + 4W?)

—8, > qi(K[WIo[W])" 'x =0, (36)
i=1

This one-component hierarchy in 1 + 1 dimensions can also be found in [10].
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4. Reductions to systems of ODEs

We now consider reductions of the hierarchy (24) to systems of ODEs. We,jakeO and
9y, = ad,, for some constant, which then yields

aR"Uy +aR" M oMi[U]+ Y R"G; =0 (37)
i=0

wherea and all g; are now constant parameters. Setting= 0 obtains non-autonomous
extensions of the stationary flows of the first sequengg of the Boussinesq hierarchy;
settinge = 0 gives non-autonomous extensions of the stationary flows of the second sequence
(toqq) Of the Boussinesq hierarchy. Here for reasons of convenience we consider both of
these together. Further generalizations of (37) are readily obtained by adding lower-order
Boussinesq flows. Following the approach in [21] we are able to use our non-isospectral
scattering problems to obtain linear problems for the hierarchy of ODEs (37). Thus we obtain

wxxx = _wa - (V - /\)W (38)
(Z An_i&')wl = Qn‘ﬂ[/xx + (a)\n + Pn - Qn,x)l/fx + %(ZU Qn - 3Pn,x + 2Qn,xx)w (39)
i=0

where we assume that not gllare zero. Heré?, = (P,, 0,)” is given by (27) where now

K; = aR'U, +aR' " JoMi[U]+ > R/ G, (40)
j=0
and Ky = aU, + Gy.
Inthe local casg; = 0,i =0,1,2,...,n — 2, the hierarchy (37) reads

aR"U, +aR" T IoMi[U] + g, 1 2U XUy + gy 0 (41)
3 3V +xV, 1

where we now assume that at least ong,9fg,_1 is non-zerot. We note that in the current
work we do not address the question of the order of the irreducible system equivalent to (41);
for example, in the case= 1 with « = 0, this system is fourth order but is in fact equivalent
to the fourth Painle® equationP;y, which is of course second order (see section 5 and [22] for
details). Any integrations of the system (41) can be used (if we so wish) to eliminate higher-
order derivatives ot/ andV in the above linear problem. Similarly for the corresponding
matrix linear problem, which given the above scalar linear problem we can easily write down.
Wheng, = 0 the hierarchy (41) is a similarity reduction of sums of Boussinesq flows:
whena = 0 it is the reduction of the first Boussinesq sequence under

U P(X)
 [Bn+ Dy, ]G
Q(X) (42)

= [(3n + 1)y1,]3/@+D
X

X =
[Bn + Dy, 7@

t Note that if we had takety,, = RU, + Rgo + g1 as the base equation for the non-isospectral KdV hierarchy
discussed in [10], then this hierarchy would have r&ag,, = R"U, + Y !_oR" ' g;, and in the local casg = 0,
i=01,..., n — 2, of our reductions to ODEs we would have obtaif&tl, + g,_1(4U + 2xU,) + g, = O for all

n > 0, i.e. the same structure as (41), with one sequence.
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and fora = 0 it is the reduction of the second Boussinesq sequence under

_ P(X)

~ [(Bn — Dyt,]¥GD

- 0(X) o
[(3n — 1)y1,]3/G=D

X
X =
[(Bn — Dyt,]V/C=D

where in each case = g,_1/3.

Wheng,_ 1 = 0 each component of the hierarchy (41) is easily integrated to obtain a
system with two constants of integration. We can then give a matrix Lax pair with compatibility
condition this integrated system. Our assumption in this casethatO allows us to remove
one constant of integration, if we so wish.

Thus far we have been insisting that not glivanish. If, however, we take afl = 0
we can, following [23], use the linear system (38) and (39)—or equivalently the above-
mentioned matrix linear problem—to obtain first integrals of this integrated version of (41)
(with g, = g,—1 = 0). This is done in the next section for the case 1.

The two-component hierarchy of ODEs (37) admits the same reductions to scalar
hierarchies as obtained in the previous section fo(@til)-dimensional Boussinesq hierarchy.
That is, the even flows = 2m of (37) admit both of the reductiond/, V) = 2W, W,)
and (U, V) = (W/2,0) to the corresponding ODE reductions of (33) and (34), which are,
respectively,

aR" Wy + 3aR" [ W (W, +4W?) — Y q;R"16[W]x = 0 (44)
i=1

and

aR" W, +3aR"O[W] (Wi + 3W?) = Y qR"76[W]x =0. (45)
i=1

The odd flows: = 2m —1 of (37) allow the reductiotU, V) = (2W, W,) to the corresponding
ODE reduction of (36), i.e.

CVa)rI_IZm[VV] + 3aa)cI_Imel[‘/V] - ax Z%(K[W]Q[W])m_ix =0 (46)

i=1

where H,,[W] are defined by the recursion relatiohs,.o[W] = K[W]8[W]H,[W], and
Ho[W] = 1, Hi[W] = W,, +4W?2 [19, 20]. These one-component hierarchies of ODEs (44),
(45) and (46) can be found in [10].

5. Example: the casen = 1

Here we consider in more detail the case= 1 of the above hierarchies of PDEs and
ODEs. The case = 1 of our (2 + 1)-dimensional Boussinesq hierarchy (24) is given by
equations (12) and (13) (withh = u,, V = v,). Thisadmits the reductiaiV, V) = 2W, W,)
((u,v) = (2w, w,)) to the scalar equatiod, K[W]W, + 3ad, Hi[W] — ¢1. This is the case
m = 1 of the hierarchy (36), and is written locally as

2
0 = Wyrrrry ¥ 10Wiry Wy + 2Wxrxx Wy + 1OWixy Wiy + My Wiy + 16wy wi + 16wy wiw,

+3a (wxxxx + 8wxwxx) —q1. (47)
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This subequation of an inverse Boussinesq flow can also be obtained as a subequation of
an inverse Kaup—Kupershmidt flow [10], but does not seem to have been considered in the
literature prior to the work of the current authors. We note that the funeticem always be
removed from (12), (13) and (47) by a simple shift. Ad&klund transformation for (47) is
given in [24].

The case = 1ofthe hierarchy (37), obtained as areduction of (2&RE/, +a JoM1[U |+
RGo+G1 =0, i.e.

20(2Vix — Upr +4VU — 2UU,) +a(2V — U,), + 380(2U +xU,) =0 (48)
20(Virr = 3Usaex — 2UU + 22UV, — U2 +2V2 — 3U®)

—2a(2U,x — 3V, +U?)_+1g0(3V +xV,) +g1=0. (49)
For this system we obtain a linear problem with given by
(Ao + gV = 3(aU +3a) Yy + 5a(V = Uy +31) + gox ]y

+3[a(2U,, +2U% — 3V,) + 6aU — 3go|¥r (50)
where we assume that at least oneg@f g, is non-zero. Taking = O then gives the first
member of a hierarchy of systems of ODEs obtained as non-autonomous extensions of the
stationary flows of the first Boussinesq sequence. Takirg O gives the first member of a
hierarchy of systems of ODEs obtained as non-autonomous extensions of the stationary flows
of the second Boussinesq sequence.

Fora = 0O the above system is therefore a non-autonomous extension of the stationary

flow of the Boussinesq system itself. In the cgse# O elimination ofV gives (assuming
a # 0) a fourth-order ODE fot/,

a?(Ux +2U%)  + 385(x°Uss + TxU, +8U) =0 (51)

which can be obtained from the Boussinesq system under the similarity reduction (43) and is
equivalent to the fourth Painlévequation?;y [22]. (Note that for this case of the system (48)

and (49) we can always sgt = 0 by a simple shift or’.) We note thatP,,, does of course

have a well known second-order linear problem [25-27]. However, here it appears at the base
of a hierarchy of systems of ODEs for which we are able to give third-order linear problems.
This hierarchy (i.e. (41) witlw = 0, to which we can readily add lower-order Boussinesq
flows) can then be referred to asPa, hierarchy. In the case = 0 of (48) and (49) having

go = 0, elimination ofV gives the first Painlév equationP; (since we then assumg ## 0).

Once again this equation has a well known second-order linear problem [25-27].

Fora # 0 the system (48) and (49) is the first member of a hierarchy of systems of ODEs
having third-order linear problems related to the first Boussinesq sequence. This hierarchy
is (41) witha = 0. However, since we can always add lower-order Boussinesq flows to this
hierarchy, in what follows we include the parametén our consideration of (48) and (49). As
we shall see later, this system includes as a special case an ODE defining a new transcendent
due to Cosgrove [11]. Thus our hierarchy is, in fact, based on a generalization of Cosgrove’s
equation.

Cosgrove’s equation can be obtained from the special gase0 and so, for reasons of
simplicity, we take this restriction in the discussion of (48) and (49) we give here. In this case
the system (48) and (49) is equivalent to

0=0a(2Viy — Usex +4VU — 2UU,) +3a(2V — U,) — 3C (52)
0=a(Virx + 2UUyy + 22UV, — U2+ 8U,V — 6VZ + 3U°%) + 3a(V, + U?) — 9g1x + 9D
(53)
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whereC and D are two constants of integration, and where we assginié 0. This system
has the matrix linear problem

0 1 0
v, = U 0 1]|® (54)
V—3IU—2» —3U O

a(Uy — 3V, — 2U7?) 3a(V +31) —3(aU + 3a)

3
—EGU

—a[ Vi + 3UU, a(Uy +U?) +3aU 3a[3r+V - U,]
+1UV +3)\U]
951%, = | +3a(31—V)-3C .

@[3UU,, — U? a[Vix +ZUV = 20U a3V, — 2U,,
+3VU, — 3V2+ U3 —6C +3a(31+V) ~1y?] - 3aU
+30(2V — Uy) — 92

+%aU2 —9g1x +9D

(55)

Note that takingx = 0 yields the above-mentioned reduction of (48) and (49;to

Our assumption thus far that # 0 allows us to seD = 0 in the system (52) and (53),
and in the above matrix linear problem, if we so wish. If we now, however, gake 0, we
can then use this matrix linear problem to obtain first integrals of the resulting autonomous
version of (52) and (53). Taking the determinant of the matrix in (55) (with= 0) yields a
quartic inA of the form

Det= —a®A*+ (@?D — a®)A2 + AL + B. (56)
Here A and B are two constants of motion of the system (52) and (53) with- 0. We find
that
A= (2a)’[2ViVix = Ui Viw = 2UU Uy, + 2UU,V, +4UVV, + U3

2
—4UZV +6U,V? — 3UU, — 4V + 8UV] + (3e) [3D(2V — U,)
—C(V, +Ud +a(2VV, — UV, — U?U, +2U%V)] +d°C. (57)

The expression foB, which is too long to reproduce here, is of degree threg,inand two
in V..

Under the reductiotlU, V) = (2W, W,), with C = 0 (since we integrated equations (48)
and (49), withgo = 0), and withg; = ¢1/9, the system (52) and (53) reduces to the single
ODE

a(Wegry + 12W W,y + 6W2 + 2 W3) + 3a (W, +4W?) — g1x + 9D = 0. (58)

This ODE is equivalent to an ODE found by Cosgrove using Paintdassification [11], and
which is thought to define a new transcendent. The above matrix linear problem (54) and
(55) then reduces to the matrix linear problem for this ODE given in [10] (see also [24]). In
the casey; = 0 we find that for this reduction the above expressionAaranishes, and the
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expression foB then gives a first integral for (58) (wify = 0) of degree two ifW, .. This
is presumably equivalent (modulo an additional simple first integral) to that given in [11].

We note that it is possible to eliminatefrom the system (52) and (53) to obtain a sixth-
order ODE inU of degree two, which also has of course solutions given in terms of solutions
of (58). We also note that this system (52) and (53) arises here as the (integrated) stationary
flow of an integrable evolution equation (similarly its generalization (48) and (49)), although
the reduction (58) does not appear to do so.

6. Conclusions

Non-isospectral extensions to 2 + 1 dimensions of the third-order scattering pregblen

Uy, +(V—1)y¥ = 0have notbeen considered in the literature before. Here we have given such
an extension. This then allows the construction of a new integrable variant of the Boussinesq
hierarchy in 2 + 1 dimensions, together with its corresponding hierarchy of underlying linear
problems. This extends our previous work on non-isospectral extensions of the Sawada—
Kotera and Kaup—Kupershmidt hierarchies. Reductions of this non-isospectral Boussinesq
hierarchy to lower dimensions then include non-autonomous extensions of Boussinesq and
inverse Boussinesq flows, and also new hierarchies of systems of ODEs, all together with
their underlying linear problems. In the general case these hierarchies of PDEs and ODEs are
non-local. In the local case we have identified one hierarchy of ODE$ag khierarchy, and
another as being based on a generalization of Cosgrove’s equation. It is this generalization of
Cosgrove’s equation, i.e. (52) and (53), which has in turn the further generalization (48) and
(49), which is the simplest of our new examples.
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